Classification of Normal Quartic Surfaces with Irrational Singularities
نویسندگان
چکیده
If a normal quartic surface admits a singular point that is not a rational double point, then the surface is determined by the triplet (M,D,E) consisting of the minimal desingularization M , the pullback D of a general hyperplane section, and a non-zero effective anti-canonical divisor E of M . Geometric constructions of all the possible triplets (M,D,E) are given.
منابع مشابه
. A G ] 1 3 M ay 1 99 9 On smooth surfaces in projective four - space lying on quartic hypersurfaces with isolated singularities
Dedicated to Robin Hartshorne in occasion of his 60th birthday.
متن کامل2 00 6 Monoid hypersurfaces
A monoid hypersurface is an irreducible hypersurface of degree d which has a singular point of multiplicity d−1. Any monoid hypersurface admits a rational parameterization, hence is of potential interest in computer aided geometric design. We study properties of monoids in general and of monoid surfaces in particular. The main results include a description of the possible real forms of the sing...
متن کاملNoncommutative K3 Surfaces
We consider deformations of a toroidal orbifold T 4/Z2 and an orbifold of quartic in CP . In the T 4/Z2 case, we construct a family of noncommutative K3 surfaces obtained via both complex and noncommutative deformations. We do this following the line of algebraic deformation done by Berenstein and Leigh for the Calabi-Yau threefold. We obtain 18 as the dimension of the moduli space both in the ...
متن کاملTENSION QUARTIC TRIGONOMETRIC BÉZIER CURVES PRESERVING INTERPOLATION CURVES SHAPE
In this paper simple quartic trigonometric polynomial blending functions, with a tensionparameter, are presented. These type of functions are useful for constructing trigonometricB´ezier curves and surfaces, they can be applied to construct continuous shape preservinginterpolation spline curves with shape parameters. To better visualize objects and graphics atension parameter is included. In th...
متن کاملReal Congruence of Complex Matrix Pencils and Complex Projections of Real Veronese Varieties
Quadratically parametrized maps from a real projective space to a complex projective space are constructed as projections of the Veronese embedding. A classification theorem relates equivalence classes of projections to real congruence classes of complex symmetric matrix pencils. The images of some low-dimensional cases include certain quartic curves in the Riemann sphere, models of the real pr...
متن کامل