Classification of Normal Quartic Surfaces with Irrational Singularities

نویسندگان

  • YUJI ISHII
  • NOBORU NAKAYAMA
چکیده

If a normal quartic surface admits a singular point that is not a rational double point, then the surface is determined by the triplet (M,D,E) consisting of the minimal desingularization M , the pullback D of a general hyperplane section, and a non-zero effective anti-canonical divisor E of M . Geometric constructions of all the possible triplets (M,D,E) are given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 00 6 Monoid hypersurfaces

A monoid hypersurface is an irreducible hypersurface of degree d which has a singular point of multiplicity d−1. Any monoid hypersurface admits a rational parameterization, hence is of potential interest in computer aided geometric design. We study properties of monoids in general and of monoid surfaces in particular. The main results include a description of the possible real forms of the sing...

متن کامل

Noncommutative K3 Surfaces

We consider deformations of a toroidal orbifold T 4/Z2 and an orbifold of quartic in CP . In the T 4/Z2 case, we construct a family of noncommutative K3 surfaces obtained via both complex and noncommutative deformations. We do this following the line of algebraic deformation done by Berenstein and Leigh for the Calabi-Yau threefold. We obtain 18 as the dimension of the moduli space both in the ...

متن کامل

TENSION QUARTIC TRIGONOMETRIC BÉZIER CURVES PRESERVING INTERPOLATION CURVES SHAPE

In this paper simple quartic trigonometric polynomial blending functions, with a tensionparameter, are presented. These type of functions are useful for constructing trigonometricB´ezier curves and surfaces, they can be applied to construct continuous shape preservinginterpolation spline curves with shape parameters. To better visualize objects and graphics atension parameter is included. In th...

متن کامل

Real Congruence of Complex Matrix Pencils and Complex Projections of Real Veronese Varieties

Quadratically parametrized maps from a real projective space to a complex projective space are constructed as projections of the Veronese embedding. A classification theorem relates equivalence classes of projections to real congruence classes of complex symmetric matrix pencils. The images of some low-dimensional cases include certain quartic curves in the Riemann sphere, models of the real pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002